Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF) of Cellulosic Material
نویسندگان
چکیده
Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum), white rot (Phanerochaete chrysosporium) and soft rot (Trichoderma reesei). After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose) of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.
منابع مشابه
Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation.
This research aims at developing a biorefinery platform to convert lignocellulosic corn fiber into fermentable sugars at a moderate temperature (37 °C) with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum), and soft-rot (Trichoderma reesei) fungi were used for in situ enzyme production to hydrolyze cellulosic and hemicellulosic components of co...
متن کاملStructural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar
BACKGROUND Pretreatment is a key step to decrease the recalcitrance of lignocelluloses and then increase the digestibility of cellulose in second-generation bioethanol production. In this study, wood chips from triploid poplar were biopretreated with white rot fungus Trametes velutina D10149. The effects of incubation duration on delignification efficiency and structural modification of cellulo...
متن کاملEvaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathwa...
متن کاملStudy of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process.
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Be...
متن کاملSimultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet-disk milling.
An advanced pretreatment method that combines steam treatment (ST) with wet disk milling (WDM) was evaluated using two different species of woods, viz., Hinoki cypress (softwood) and Eucalyptus (hardwood). Bioconversion of the pretreated products was performed using enzymatic saccharification via a commercial cellulase mixture and two types of fermentation processing, i.e., yeast-based simultan...
متن کامل